

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría III Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Geometría III.

Curso Académico 2022-23.

Grado Doble Grado en Ingeniería Informática Matemáticas.

Grupo Único.

Profesor Antonio Martínez López.

Descripción Parcial de los Temas 1 y 2.

Fecha 25 de noviembre de 2023.

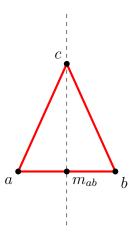
Duración 90 minutos.

Ejercicio 1 (4 puntos). Estudiar si existe una aplicación afín de \mathbb{R}^2 en \mathbb{R}^2 verificando

$$f(0,1) = (1,1)$$
 $f(1,2) = (-1,1)$ $f(-1,0) = (3,1)$ $f(0,0) = (2,1)$

En caso afirmativo, calcula su expresión matricial en el sistema de referencia usual, y decide si es o no biyectiva.

Ejercicio 2 (2 puntos). Razona que en un triángulo isósceles el incentro, circuncentro, baricentro y ortocentro están siempre alineados.



Sea \mathbb{E} un espacio afín euclídeo, y sea $T = \{a, b, c\} \subset \mathbb{E}$ un triángulo isósceles con vértices a, b, c. Supongamos sin pérdida de generalidad que es isósceles por el lado [a, b]. Es decir, que d(a, c) = d(b, c).

Veamos en primer lugar que la mediatriz del lado [a,b] coincide con la bisectriz del ángulo \widehat{c} . Es decir, que $R_c = B_c$. De forma evidente, tenemos que $c \in B_c$. Además, como el triángulo es isósceles, tenemos que d(a,c) = d(b,c), por lo que $c \in R_c$. De forma similar, es directo ver que $m_{ab} \in R_c$. Veamos ahora que $m_{ab} \in B_c$:

$$\overrightarrow{cm_{ab}} = m_{ab} - c = \cancel{c} + \frac{1}{2} \left(\overrightarrow{ca} + \overrightarrow{cb} \right) - \cancel{c} = \frac{1}{2} \left(\overrightarrow{ca} + \overrightarrow{cb} \right) = \frac{1}{2} \cdot \frac{\|\overrightarrow{ca}\|}{\|\overrightarrow{ca}\|} \cdot \left(\overrightarrow{ca} + \overrightarrow{cb} \right) = \frac{1}{2} \cdot \|\overrightarrow{ca}\| \left(\frac{\overrightarrow{ca}}{\|\overrightarrow{ca}\|} + \frac{\overrightarrow{cb}}{\|\overrightarrow{ca}\|} \right) \stackrel{(*)}{=} \frac{1}{2} \cdot \|\overrightarrow{ca}\| \left(\frac{\overrightarrow{ca}}{\|\overrightarrow{ca}\|} + \frac{\overrightarrow{cb}}{\|\overrightarrow{cb}\|} \right) \in \overrightarrow{B_c}$$

donde en (*) hemos usado que, como el triángulo es isósceles, d(c, a) = d(b, c).

Por tanto, tenemos que $m_{ab}, c \in R_c \cap B_c$, con $m_{ab} \neq c$, por lo que $R_c = B_c$. Veamos ahora que la altura respecto del vértice c coincide con la bisectriz del ángulo \widehat{c} , es decir, que $H_c = B_c$. De forma evidente, tenemos que $c \in B_c \cap H_c$. Además, ya hemos visto que $m_{ab} \in B_c$. Veamos ahora que $m_{ab} \in H_c$:

$$\left\langle \overrightarrow{cm_{ab}}, \overrightarrow{ab} \right\rangle = \left\langle m_{ab} - c, \overrightarrow{ab} \right\rangle = \left\langle \cancel{e} + \frac{1}{2} \left(\overrightarrow{ca} + \overrightarrow{cb} \right) - \cancel{e}, \overrightarrow{ab} \right\rangle = \frac{1}{2} \left\langle \overrightarrow{ca} + \overrightarrow{cb}, \overrightarrow{ab} \right\rangle =$$

$$= \frac{1}{2} \left\langle -\overrightarrow{ac} + \overrightarrow{cb}, \overrightarrow{ac} + \overrightarrow{cb} \right\rangle =$$

$$= \frac{1}{2} \left[-\|\overrightarrow{ac}\|^2 + \|\overrightarrow{cb}\|^2 - \left\langle \overrightarrow{ac}, \overrightarrow{cb} \right\rangle + \left\langle \overrightarrow{cb}, \overrightarrow{ac} \right\rangle \right] \stackrel{(*)}{=} 0$$

donde, en la última igualdad, hemos usado que, como el triángulo es isósceles, d(c, a) = d(b, c). Por tanto, $\overrightarrow{cm_{ab}} \perp \overrightarrow{ab}$ y, por tanto, $m_{ab} \in H_c$.

Por tanto, tenemos que m_{ab} , $c \in H_c \cap B_c \cap R_c$, con $m_{ab} \neq C$, por lo que $R_c = B_c = H_c$. Como $C, O, I \in R_c = B_c = H_c$, tenemos que C, O, I están alineados en dicha recta. Es decir, como coinciden la altura, la bisectriz y la mediatriz asociadas al vértice C, entonces el circuncentro, el ortocentro y el incentro están alineados.

Como además el baricentro siempre está alineado con el circuncentro y el ortocentro por el Teorema de Euler en la Recta de Euler, tenemos que los 4 puntos notables de un triángulo isósceles están alineados en la Recta de Euler.

Ejercicio 3 (4 puntos). Determina el movimiento helicoidal en \mathbb{R}^3 cuyo eje viene dado por $e := \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0, z = 1\}$, ángulo $\frac{\pi}{4}$ y vector de traslación v = (2, 2, 0).